梯度下降法
使用梯度下降法。
先定義目標函式:給一平面上座標,輸出該座標與平面上最遠點的距離平方。
我們的任務是將其最小化。
梯度下降:
先隨便選一點,作為起點,向 +x, +y 方向分別跨一小步, 再評估向 +x, +y 移動的目標函式,是否有進步?有則將起點往正向更新位置,否則往反向更新位置。
簡單來說,就是利用 x, y 方向的偏微分,往負的梯度方向前進,就能夠帶我們前往更深的地方(使得目標函式的輸出最小化)。
也就是說,
將 x, y 往 f(x,y) 較低的位置更新。
另外兩種解法有隨機增量、三分搜,會陸續在以後更新。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#pragma GCC target ("avx2")
#pragma GCC optimize ("O3")
#include <iostream>
#include <iomanip>
#include <string>
#include <algorithm>
#include <functional>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
vector< pair<double,double> > cord;
inline double l2(double x, double y) {
double maxv = 0;
for (vector< pair<double,double> >::iterator v=cord.begin(); v!=cord.end(); ++v) {
double dx = v->first-x;
double dy = v->second-y;
maxv = max(maxv, dx*dx+dy*dy);
}
return maxv;
}
inline double l1(double x, double y) {
double maxv = 0;
for (vector< pair<double,double> >::iterator v=cord.begin(); v!=cord.end(); ++v) {
double dx = v->first-x;
double dy = v->second-y;
maxv = max(maxv, sqrt(dx*dx+dy*dy));
}
return maxv;
}
pair< pair<double, double> , double> brute(int ite, int early_stop=1e9) {
double initx, inity;
double eps = 1;
//double eps = 1e-3;
double momentum = 0.9;
double delta = 0.95;
//double delta = 1;
//int idx = cord.size()/2;
//initx = cord[idx].first;
//inity = cord[idx].second;
initx = ((double)rand()*2e10/(double)RAND_MAX)-1e10;
inity = ((double)rand()*2e10/(double)RAND_MAX)-1e10;
double ori=1e9;
double min_loss = ori;
int not_improved = 0;
for (int i=0; i<ite && not_improved<early_stop; ++i) {
//cout << fixed << setprecision(2) << initx << ' ' << inity << ' ' << ori << endl;
eps*=delta;
ori= l2(initx, inity);
if (ori < min_loss) {
min_loss = ori;
not_improved = 0;
} else {
++not_improved;
}
double tx = l2(initx+eps, inity);
double ty = l2(initx, inity+eps);
initx+=(ori-tx)*momentum;
inity+=(ori-ty)*momentum;
}
return make_pair( make_pair(initx, inity), l1(initx,inity));
}
#define RL() fgets(buff, 4000, stdin)
int main(void) {
srand(time(NULL));
int N;
char buff[4096];
while((RL())!=NULL) {
sscanf(buff, "%d", &N);
if (N==0) break;
cord.clear();
for (int i=0; i<N; ++i) {
double x, y;
RL();
sscanf(buff,"%lf%lf", &x, &y);
cord.push_back(make_pair(x,y));
}
pair< pair<double,double> , double> res = brute(1010, 200);
printf("%.2lf %.2lf %.2lf\n" , res.first.first, res.first.second, res.second);
}
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include <cmath>
#include <complex>
#include <valarray>
#include <functional>
// not seperate *.h and *.cpp
// for convenience in contest
template<class T>
class GeoVec {
public:
T x, y;
GeoVec() {}
GeoVec(const T &x, const T &y) : x(x), y(y) {}
GeoVec(const GeoVec ©) : x(copy.x), y(copy.y) {}
const GeoVec operator*(T a) const { return GeoVec(x*a,y*a); }
const GeoVec operator/(T a) const { return GeoVec(x/a,y/a); }
static const T L1(const GeoVec &a) {
return std::sqrt(a.x*a.x + a.y*a.y);
}
static const T L2(const GeoVec &a) {
return (a.x*a.x + a.y*a.y);
}
const GeoVec rot(T rad) const {
using std::cos;
using std::sin;
return GeoVec(cos(rad)*x-sin(rad)*y, sin(rad)*x+cos(rad)*y);
}
const GeoVec unitVec(void) const { return (*this/(L1(*this))); }
const GeoVec tVec(void) const { return GeoVec(-y, x); }
const T cross(const GeoVec &v) {
return (this->x*v.y - this->y*v.x);
}
// 點向式
// 從 Line: sx,sy 射出的向量 v , dot: x, y
double dot2Line(T x, T y, T sx, T sy, const GeoVec &v) {
GeoVec u(x-sx, y-sy);
// 向量 sx, sy 射出的向量到 x, y
T cross = v.cross(u);
// v x u 得到面積
if(cross<0) cross=-cross;
return cross/L1(v);
// 面積 / 底 = 高(點到直線距離)
}
// 求 a1xb1y+c1=0, a2xb2y+c2=0 交點
static GeoVec twoLineSec(T a1, T b1, T c1, T a2, T b2, T c2) {
// 小心除 0
return GeoVec((c1*a2-a1*c2) / (b1*a2-b2*a1),
(c1*b2-c2*b1) / (a1*b2-b1*a1));
}
};
// all public for convenient in contest
// following are operator overloading for class template GeoVec
template<class T>
const GeoVec<T> operator+(const GeoVec<T> &first, const GeoVec<T> &second) {
return GeoVec<T>(first.x+second.x, first.y+second.y);
}
template<class T>
const GeoVec<T> operator-(const GeoVec<T> &first, const GeoVec<T> &second) {
return GeoVec<T>(first.x-second.x, first.y-second.y);
}
template<class T>
const T operator*(const GeoVec<T> &first, const GeoVec<T> &second) {
// dot product
return (first.x*second.x + first.y*second.y);
}
template<class T>
const T operator%(const GeoVec<T> &first, const GeoVec<T> &second) {
// cross product
return first.cross(second);
}
#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
using namespace std;
vector< GeoVec<double> > cord;
GeoVec<double> O;
double r;
int main(void) {
int n;
while(scanf("%d", &n)==1 && n) {
for (int i=0; i<n; ++i) {
double x, y;
scanf("%lf %lf", &x, &y);
cord.push_back(GeoVec<double>(x, y));
}
//random_shuffle(cord.begin(), cord.end());
O = cord[0]; r=0.0;
for (int i=1; i<cord.size(); ++i) {
if (GeoVec<double>::L2(cord[i]-O) > r*r + 1e-7) {
O = cord[i]; r = 0.0;
for (int j=0; j<i; ++j) {
if (GeoVec<double>::L2(cord[j]-O) > r*r + 1e-7) {
O = GeoVec<double>(cord[i]+cord[j])/2.0;
r = GeoVec<double>::L1(cord[j]-O);
for (int k=0; k<j; ++k) {
if (GeoVec<double>::L2(cord[k]-O) > r*r + 1e-7) {
// 求外心
O = GeoVec<double>::twoLineSec(
cord[j].x-cord[i].x,
cord[j].y-cord[i].y,
( cord[j].L2(cord[j]) - cord[i].L2(cord[i]) ) / 2.0,
cord[k].x-cord[i].x,
cord[k].y-cord[i].y,
( cord[k].L2(cord[k]) - cord[i].L2(cord[i]) ) / 2.0
);
r = GeoVec<double>::L1(O-cord[k]);
}
}
}
}
}
}
printf("%.2lf %.2lf %.2lf\n", O.x, O.y, r);
cord.clear(); // cleanup
}
}